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Abstract—Mesostructured zirconia has been synthesized by using zirconium chloride and PEO nonionic ethoxy-
lated sorbitan ester (Tween-20, -40, -60 or -80) as a zirconium source and structure-directing agent in an aqueous me-
dium. To remove the occluded surfactants, UV/ozone treatment has been utilized instead of calcination due to thermal
instability. This results from a special molecular structure of Tween surfactant. From XRD, SEM and TEM analyses,
the materials treated with UV light and in-situ generated ozone has a wormhole structure and ill-defined or well-defined
spherical particles.
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INTRODUCTION et al., 1999]. The MSU-X compounds usually prepared in neutral
pH possess a 3D wormhole porous framework with poor crystallo-

Since the discovery of mesoporous silicates based on amphiphiligraphic symmetry, which is expected to enhance the diffusion rate
supramolecular templates [Kresge et al., 1992; Inagaki et al., 1993}f reacting species.
this surfactant templating procedure has been extended to the for- In this study, PEO nonionic surfactant Tween is used as the struc-
mation of non-silica mesoporous oxides such as titania [Antonellture-directing agent. The zirconium mesophase is prepared in an
and Ying, 1995], niobia [Antonelli and Ying, 1996], tantala [An- aqueous medium in contrast to the work of Yang et al. [1998, 1999]
tonelli and Ying, 1996], alumina [Bagshaw and Pinnavaia, 1996and is treated with ultraviolet (UV) light and in-situ generated ozone
Kim et al., 2002], manganese oxide [Tian et al., 1997], hafnia [Liuinstead of calcination. Finally, the material obtained in this work is
et al., 1997] and zirconia. Among these non-silica oxides, zircocompared to the one synthesized in a nonaqueous medium.
nium oxide is of particular interest for acid catalysis [Sohn et al.,

1987; Yamaguchi, 1994]. Hence, much effort has been directed to EXPERIMENTAL

the preparation of mesoporous zirconia using cationic quaternary

ammonium [Ciesla et al., 1999; Reddy and Sayari, 1996; Knowle4. Preparation of Zirconium Mesophase

and Hudson, 1995], anionic surfactants [Wong and Ying, 1998; Pa- The zirconium mesophase was synthesized by using the ethox-
checo et al., 1997] and primary amines [Huang et al., 1996] as thgated derivatives of the fatty esters of sorbitan, called Tween, as the
structure directing agents. Yang et al. [1998, 1999] recently prestructure-directing agent. There is a series of Tween surfactants with
pared mesoporous ZrGsing block copolymers and zirconium chlo-  different hydrophobic chains, abbreviated asXwhereX is 20,

ride in a nonaqueous medium. This material was reported to haw0, 60 or 80. The structure of Tdis depicted in Fig. 1. In a typical
two-dimensional (2D) hexagonal structure with a semicrystallinepreparation, 0.002 mol of TX-was dissolved in 100 g of water.
wall. They utilized inorganic salts as metal precursors in a non-To this solution, zirconium chloride precursor in anhydrous ethanol
aqueous medium such as ethanol solution, because the presence
water makes the hydrolysis and condensation of reactive metal sp
cies as well as the subsequent mesostructure assembly difficult
control [Vioux, 1997].

In recent years, mesoporous silica molecular sieves were pre
pared in the presence of nonionic poly(ethylene oxide) (PEO) base
surfactants. These materials were named as MSU-X (X=1 to 4
(MSU for Michigan State University) where X refers to the surfac-
tant molecules that can be either alkyl-PEO, alkyl-aryl PEO, PEO-
PPO-PEO block copolymers, or ethoxylated derivatives of the fatty
esters of sorbitan (Tween), respectively [Bagshaw et al., 1995; Prouzet Tween 20: Polyoxyethylene sorbitan monolaurate (Ri{
Tween 40: Polyoxyethylene sorbitan monopalmitate (R,

x+y+z+w = 20

"To whom correspondence should be addressed. Tween 60: Polyoxyethylene sorbitan monostearate (R:C
E-mail: hkrhee@snu.ac.kr Tween 80: Polyoxyethylene sorbitan monooleate {R;,CH
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his retirement from Hanyang University. Fig. 1. Structure of the ethoxylated sorbitan Tween surfactants.
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(10 mL) was added slowly under vigorous stirring, where Zr/sur-ple/KBr=1/100 weight ratio) and pressed to wafer.
factant molar ratio was equal to 8. The mixture was then stirred con-

tinuously in a thermostatic oil bath maintained at°@fr 48 hr. RESULTS

The powder obtained was filtered, washed with ethanol and dried

at room temperature. Fig. 2 shows the FT-IR spectra of a zirconium mesophase and
2. Removal of PEO Nonionic Surfactant samples treated with UV/ozone for different periods of time. The

The zirconium mesophase was found to be thermally unstablpeaks assigned to C-H stretching (2,924 and 2,85% were ob-
because calcination at 5@leads to a structure collapse, resulting served in the former, whereas they tended to disappear as the ex-
in the black compound. Instead of calcination, the material was treatqabsure time to UV light increases. After 5 hr of UV/ozone treat-
with UV light and in-situ generated ozone at room temperature tanent, the C-H peaks were no longer observed, indicating that the
remove the occluded surfactants. Recent studies have suggestaatfactant was completely removed. Xuemplated materials, which
that UV/ozone treatment is an effective method for the removal ofwere treated with UV light and in-situ generated ozone for more
the template surfactants from bulk 3D MCM-41 materials [Keenethan 5 hr, will be designated as KwZrO.,.
et al., 1998] or 2D mesoporous thin fims [Clark Jr. et al., 2000]. In  Fig. 3 shows the XRD patterns for the zirconium mesophases
a typical treatment, the dried zirconium mesophase was placed qorepared with a series of Tween surfactants. The patterns resemble
a watch glass and then exposed to UV lightlB4-257 nm) gen-  those obtained for MSU-X silicas with a single correlation peak
erated by a low-pressure Hg discharge lamp (electrical power 20 WBagshaw et al., 1995; Prouzet et al., 1999]. This single peak pat-
in a quartz envelope. This treatment was carried out within a closettm is typical of materials possessing the 3D wormhole porous frame-
chamber stored in a fume hood for an appropriate period of time. work structure. A broad peak is also observed ngaf 2. Anal-

3. Characterization of Mesostructured Zirconia yses are in progress to identify this second diffraction feature, which
Powder X-ray diffraction patterns in thé eange of 1-10were cannot be assigned to a disordered hexagonal framework but could
collected at ambient temperature by using Curidiation A= be related to the wormhole geometry of the porous framework. Fig.

1.54056A, on a Philips X'Pert MPD diffractometer operating at 40 4 presents the XRD patterns for ®aiZrO, (X=20, 40, 60 and 80).

kV and 40 mA. Transmission electron microscopy (TEM) studiesThe XRD patterns of UV/ozone-treated samples are very similar
were performed on a JEOL JSM-2000EXII electron microscopeto those of the corresponding zirconium mesophases.

operating at 200 keV. The samples for TEM were mounted on a Table 1 summarizes the maximuéid® the peak observed in the
microgrid carbon polymer supported on a copper grid by placing &RD patterns of the zirconium mesophases and UV/ozone-treated
few droplets of a suspension of ground sample in ethanol on theamples, and their correspondihgpacing. In comparison between
grid, followed by drying at ambient conditions. Field emission scan-the two samples, the latter has a largev&lue and thus a smaller
ning electron microscopy (FE-SEM) was performed on a JEOL JSMé spacing than the former. This indicates that UV/ozone treatment
6700F microscope. Fourier transform infrared spectroscopy (FTleads to the shrinkage of pores. In both the zirconium mesophases
IR) was utilized to confirm the complete removal of the surfactantsand UV/ozone-treated samples, thgpacing increases from 3.20

on a Nicolet Impact 410. The sample was dispersed in KBr (samto 3.66 nm and 2.88 to 3.55 nm, respectively, as the length of hy-
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Fig. 2. FT-IR spectra of (a) a zirconium mesophase and samples Fig. 3. XRD patterns of zirconium mesophases prepared with a
treated with UV light and in-situ generated ozone for (b) series of Tween surfactants; (a) Tw-20, (b) Tw-40, (c) Tw-
1hr, (c)2hr, (d)3hrand (e) 5 hr. 60 and (d) Tw-80.
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Table 1. Values of B and the correspondingd spacing observed
in the XRD patterns of zirconium mesophases and UV/
ozone-treated samples prepared with a series of Tween
surfactants

Surfactant:

Zirconium mesophase  UV/ozone-treated sample

26(°) dspacing (nm)

A(o) dspacing (nm)

(@) Tw-20
Tw-40
Tw-60
Tw-80

Intensity (a.u.)

{c)

2.76
2.66
241
2.76

3.20 3.06
3.32 2.69
3.66 2.49
3.20 3.14

2.88
3.28
3.55
2.81

(a)

{b) drophobic chains increases from Tw-20 (REG) to Tw-60 (R=
C,-Hss). Surprisingly, Tw-80 with an unsaturateghsz, chain (see
Fig. 1) results in a pore size reduction compared to Tw-40 and Tw-
60. Therefore, the normally observed correlation between the hy-

2 4 6 8 10 drophobic chain length and tHepacing does not apply in this case
o [Beck et al., 1994]. This result is similar to those observed in MSU-4
206 (") silicas [Prouzet et al., 1999).

Fig. 4. XRD pattems of UV/ozone-treated TwX-ZrO ,; X=(a) 20, SEM images showing the particle texture of 2r0, (X=20,
(b) 40, (c) 60 and (d) 80. 40, 60 and 80) are displayed in Fig. 5. Tw-20 provides a zirconia

Fig. 5. SEM images of UV/ozone-treated Tw—ZrO ,; X=(a) 20, (b) 40, (c) 60 and (d) 80.
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Fig. 6. TEM images of UV/ozone-treated Twk—ZrO ,; X=(a) 20, (b) 40, (c) 60 and (d) 80.

with ill-defined spherical particles whereas Tw-40 yields a zirconianeutral pH range that corresponds to the lowest reactivity domain
with well-defined elementary spherical particles with a mean diametefor TEOS hydrolysis. Especially, MSU-4 silica can be synthesized
of 150 nm. Unlike Tw-20 and Tw-40, the materials synthesized withby the addition of fluoride ion, acting as a mineralizer that boosts
Tw-60 and Tw-80 exhibit a structure with large aggregates of abouthe reaction rate and improves the structural quality of the final ma-
0.5 and Jum, respectively, consisting of small and ill-defined parti- terial without changing the pH of the solution [Prouzet et al., 1999].
cles. These particles are much smaller than those usually obtained wittowever, the present zirconium mesophase has been synthesized
MCM-41-type materials having a mean diameter gimdKresge  without NaF addition at a low pH of ~1, which was due to chlo-
etal., 1992]. Therefore, it is expected to obtain a textural porosity. rine ions of zirconium source. This environment is the same as the
TEM images of UV/ozone-treated TZrO, (X=20, 40,60 and  one reported by Yang et al. [1998, 1999]. They suggested that the
80) are shown in Fig. 6. It is noticed that no apparent order existassembly mechanism uses the PEO-metal complexation, in con-
in the pore arrangement, which is in good agreement with the aljanction with electrostatic, hydrogen bonding and van der Waals
sence of extra peaks in the XRD patterns. All the zirconia sampleforces to direct the mesostructure formation. It is, therefore, consid-
prepared with Tween surfactants exhibit a framework with 3D worm-ered that these interactions may also be utilized in the zirconium
hole pore structure. Similar pore distributions were observed in MSUmesophase prepared with Tween surfactants in this work.
X silicas [Bagshaw et al., 1995; Prouzet et al., 1999] and aluminas However, there is a difference between the synthesis condition

[Bagshaw and Pinnavaia, 1996]. reported by Yang et al. [1998, 1999] and the present one. In other
words, the present zirconium mesophase was prepared in an aque-
DISCUSSION ous medium. In fact, the hydrolysis and condensation of inorganic

precursors must be important in the formation of mesophases for
In general, the self-assembly of MSU-X silicas occurs in a nearmost of the non-silica oxides. Because of the lower electronegativi-
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ties of the transition metal compared to silicon [Livage et al., 1988]py treatment with UV light and in-situ generated ozone because
their alkoxides undergo nucleophilic reactions such as hydrolysighis mesophase has a thin inorganic wall. The UV/ozone-treated
and condensation more readily. This results in a precipitation andw-X-ZrQ, (X=20, 40, 60 or 80) is found to have a wormhole struc-
crystallization into bulk oxide phases directly in aqueous mediature by XRD and TEM analyses. This is in contrast to the result
Such a phenomenon was not observed when zirconium chlorideeported by Yang et al. [1998, 1999], although the synthesis was
solution was mixed with the aqueous solution of Tween surfactantscarried out under the same acidic conditions. It is worth noting that
After the mixture was placed at 1) it was at last changed to the mesoporous zirconia of this study is synthesized by using dif-
a milky emulsion, which indicates that the hydrolysis as well as theferent kinds of PEO nonionic surfactant, Tween.
self-assembly is retarded under the present condition. This is evi-
dently caused by Tween surfactants used as the structure-directing ACKNOWLEDGMENT
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